怎么求斂散性 怎么判斷斂散性

絲雨如愁2022-07-27 16:11:433149

求級數(shù)的斂散性(詳細步驟,求級數(shù)的斂散性,怎么判斷斂散性?斂散性判斷方法,求判斷級數(shù)斂散性,級數(shù)求斂散性,詳細過程謝謝。

本文導(dǎo)航

求級數(shù)的斂散性(詳細步驟)

1. ρ = lim<n→∞>a<n+1>/a<n> = lim<n→∞>3^(n+1) n!/[(n+1)! 3^n]

= lim<n→∞>3/(n+1) = 0, 級數(shù)收斂。

2. ρ = lim<n→∞>a<n+1>/a<n>

= lim<n→∞>2^(n+1)(n+1)! n^n/[(n+1)^(n+1) 2^n n!]

= lim<n→∞>2 n^n/[(n+1)^n] = lim<n→∞>2/[(1+1/n)^n] = 2/e <1,

級數(shù)收斂。

求級數(shù)的斂散性

Step 1

首先,拿到一個數(shù)項級數(shù),我們先判斷其是否滿足收斂的必要條件:

若數(shù)項級數(shù)收斂,則 n→+∞ 時,級數(shù)的一般項收斂于零。

(該必要條件一般用于驗證級數(shù)發(fā)散,即一般項不收斂于零。)

Step 2

若滿足其必要性。接下來,我們判斷級數(shù)是否為正項級數(shù):

若級數(shù)為正項級數(shù),則我們可以用以下的三種判別方法來驗證其是否收斂。(注:這三個判別法的前提必須是正項級數(shù)。)

Step 2”三種判別法

1.比較原則;

2.比式判別法,(適用于含 n! 的級數(shù));

3.根式判別法,(適用于含 n次方 的級數(shù));

(注:一般能用比式判別法的級數(shù)都能用根式判別法)

Step 3

若不是正項級數(shù),則接下來我們可以判斷該級數(shù)是否為交錯級數(shù):

Step 4

若不是交錯級數(shù),我們可以再來判斷其是否為絕對收斂的級數(shù):

6

Step 5

如果既不是交錯級數(shù)又不是正項級數(shù),則對于這樣的一般級數(shù),我們可以用阿貝爾判別法和狄利克雷判別法來判斷。

怎么判斷斂散性

先判斷這是正項級數(shù)還是交錯級數(shù)

  一、判定正項級數(shù)的斂散性

  1.先看當n趨向于無窮大時,級數(shù)的通項是否趨向于零(如果不易看出,可跳過這一步)。若不趨于零,則級數(shù)發(fā)散;若趨于零,則

  2.再看級數(shù)是否為幾何級數(shù)或p級數(shù),因為這兩種級數(shù)的斂散性是已知的,如果不是幾何級數(shù)或p級數(shù),則

  3.用比值判別法或根值判別法進行判別,如果兩判別法均失效,則

  4.再用比較判別法或其極限形式進行判別,用比較判別法判別,一般應(yīng)根據(jù)通項特點猜測其斂散性,然后再找出作為比較的級數(shù),常用來作為比較的級數(shù)主要有幾何級數(shù)和p級數(shù)等。

  二、判定交錯級數(shù)的斂散性

  1.利用萊布尼茨判別法進行分析判定。

  2.利用絕對級數(shù)與原級數(shù)之間的關(guān)系進行判定。

  3.一般情況下,若級數(shù)發(fā)散,級數(shù)未必發(fā)散;但是如果用比值法或根值法判別出絕對級數(shù)發(fā)散,則級數(shù)必發(fā)散。

  4.有時可把級數(shù)通項拆分成兩個,利用“收斂+發(fā)散=發(fā)散”“收斂+收斂=收斂”判定。

  三、求冪級數(shù)的收斂半徑、收斂區(qū)間和收斂域

  1.若級數(shù)冪次是按x的自然數(shù)順序遞增,則其收斂半徑由或求出,進而可以寫出收斂區(qū)間,再考慮區(qū)間端點處數(shù)項級數(shù)的斂散性可得冪級數(shù)的收斂域。

  2.對于缺項冪級數(shù)或x的函數(shù)的冪級數(shù),可根據(jù)比值判別法求收斂半徑,也可作代換,換成t的冪級數(shù),再求收斂半徑。

  四、求冪級數(shù)的和函數(shù)與數(shù)項級數(shù)的和

  1.求冪級數(shù)的和函數(shù)主要先通過冪級數(shù)的代數(shù)運算、逐項微分、逐項積分等性質(zhì)將其化為幾何級數(shù)的形式,再求和。

  2.求數(shù)項級數(shù)的和,可利用定義求出部分和,再求極限;或轉(zhuǎn)化為冪級數(shù)的和函數(shù)在某點的函數(shù)值。

  五、將函數(shù)展開為傅里葉級數(shù)

  將函數(shù)展開為傅里葉級數(shù)時需根據(jù)已有公式求出傅里葉系數(shù),這時可根據(jù)函數(shù)的奇偶性簡化系數(shù)的計算,然后再根據(jù)收斂性定理寫出函數(shù)與其傅里葉級數(shù)之間的關(guān)系。

斂散性判斷方法

先判斷這是正項級數(shù)還是交錯級數(shù)

  一、判定正項級數(shù)的斂散性

  1.先看當n趨向于無窮大時,級數(shù)的通項是否趨向于零(如果不易看出,可跳過這一步).若不趨于零,則級數(shù)發(fā)散;若趨于零,則

  2.再看級數(shù)是否為幾何級數(shù)或p級數(shù),因為這兩種級數(shù)的斂散性是已知的,如果不是幾何級數(shù)或p級數(shù),則

  3.用比值判別法或根值判別法進行判別,如果兩判別法均失效,則

  4.再用比較判別法或其極限形式進行判別,用比較判別法判別,一般應(yīng)根據(jù)通項特點猜測其斂散性,然后再找出作為比較的級數(shù),常用來作為比較的級數(shù)主要有幾何級數(shù)和p級數(shù)等.

  二、判定交錯級數(shù)的斂散性

  1.利用萊布尼茨判別法進行分析判定.

  2.利用絕對級數(shù)與原級數(shù)之間的關(guān)系進行判定.

  3.一般情況下,若級數(shù)發(fā)散,級數(shù)未必發(fā)散;但是如果用比值法或根值法判別出絕對級數(shù)發(fā)散,則級數(shù)必發(fā)散.

  4.有時可把級數(shù)通項拆分成兩個,利用“收斂+發(fā)散=發(fā)散”“收斂+收斂=收斂”判定.

  三、求冪級數(shù)的收斂半徑、收斂區(qū)間和收斂域

  1.若級數(shù)冪次是按x的自然數(shù)順序遞增,則其收斂半徑由或求出,進而可以寫出收斂區(qū)間,再考慮區(qū)間端點處數(shù)項級數(shù)的斂散性可得冪級數(shù)的收斂域.

  2.對于缺項冪級數(shù)或x的函數(shù)的冪級數(shù),可根據(jù)比值判別法求收斂半徑,也可作代換,換成t的冪級數(shù),再求收斂半徑.

  四、求冪級數(shù)的和函數(shù)與數(shù)項級數(shù)的和

  1.求冪級數(shù)的和函數(shù)主要先通過冪級數(shù)的代數(shù)運算、逐項微分、逐項積分等性質(zhì)將其化為幾何級數(shù)的形式,再求和.

  2.求數(shù)項級數(shù)的和,可利用定義求出部分和,再求極限;或轉(zhuǎn)化為冪級數(shù)的和函數(shù)在某點的函數(shù)值.

  五、將函數(shù)展開為傅里葉級數(shù)

  將函數(shù)展開為傅里葉級數(shù)時需根據(jù)已有公式求出傅里葉系數(shù),這時可根據(jù)函數(shù)的奇偶性簡化系數(shù)的計算,然后再根據(jù)收斂性定理寫出函數(shù)與其傅里葉級數(shù)之間的關(guān)系.

求判斷級數(shù)斂散性

1、求判斷級數(shù)斂散性的詳解見上圖。

2、判斷級數(shù)斂散性,求的詳解的第一步:

將級數(shù)的一般項進行放大。

3、判斷級數(shù)斂散性,求的詳解的第二步:

對第一步放大部分,對應(yīng)級數(shù)用正項級數(shù)的根值法,判斷是發(fā)散的。

4、判斷級數(shù)斂散性,求的詳解的第三步:

再用正項級數(shù)的比較判斷法知,原級數(shù)是絕對收斂。

5、此級數(shù)判斷級數(shù)斂散性:是收斂的且絕對收斂。

級數(shù)求斂散性,詳細過程謝謝

(-1)^(3n+1)=(-1)^(n+1),因此這兩個都是交錯級數(shù),只相差一個負號,是條件收斂,是交錯級數(shù)。用萊布尼茲判別法,一般項單調(diào)下降趨于0,所以收斂。

掃描二維碼推送至手機訪問。

版權(quán)聲明:本文由尚恩教育網(wǎng)發(fā)布,如需轉(zhuǎn)載請注明出處。

本文鏈接:http://codetoknow.com/view/21215.html

標簽: 數(shù)學

“怎么求斂散性 怎么判斷斂散性” 的相關(guān)文章

輔助排序分 輔助排序分對高考起什么作用

輔助排序分 輔助排序分對高考起什么作用

輔助排序分是什么意思?高考錄取輔助排序分是什么意思?輔助分什么意思?如果分數(shù)比某個大學的最低錄取線高,但是輔助排序分沒有達到,那樣會不會被錄取,江蘇高考輔助排序分的問題,未達到輔助排序分會被退檔嗎?本文導(dǎo)航補隱藏分是什么意思輔助排序分對高考起什么作用多少分是一個合格的輔助高于投檔線10分能錄取嗎江蘇...

數(shù)學家高斯簡介 高斯是怎么勤奮的

數(shù)學家高斯簡介 高斯是怎么勤奮的

關(guān)于高斯的簡介,高斯的資料,介紹下高斯生平 成就 等,數(shù)學家高斯簡介中文的,【德國數(shù)學家高斯詳細資料】,數(shù)學家高斯是誰。本文導(dǎo)航高斯是怎么勤奮的高斯早年經(jīng)歷高斯最出色的成就是什么數(shù)學家高斯的數(shù)學知識著名數(shù)學家高斯的長相數(shù)學家高斯的個人資料高斯是怎么勤奮的高斯是德國數(shù)學家 ,也是科學家,他和牛頓、阿基...

初中數(shù)學刷題用什么書 初二數(shù)學學生刷題買什么書最好

初中數(shù)學刷題用什么書 初二數(shù)學學生刷題買什么書最好

初中數(shù)學刷題,用哪些書好,初中數(shù)學刷題用什么書?初中數(shù)學買什么刷題比較好?初二必備的刷題書有哪些,內(nèi)蒙的孩子初中數(shù)學刷題什么書比較好?初中數(shù)學刷題什么書比較好?本文導(dǎo)航初中人教版數(shù)學刷題哪個好初中數(shù)學基礎(chǔ)差的刷什么題推薦初中數(shù)學刷題書籍推薦初二數(shù)學學生刷題買什么書最好初中數(shù)學十大刷題教輔書排行榜中考...

難什么結(jié)構(gòu)分析 迎上去的迎是左右結(jié)構(gòu)嗎

一個很難的英語句子的結(jié)構(gòu)分析,一個很難的英語句子結(jié)構(gòu)的分析----高手進,一個很難的英語句子結(jié)構(gòu)分析----------務(wù)必精英人士進,難字是什么結(jié)構(gòu)?"難"是左中右,灘是什么結(jié)構(gòu)?在現(xiàn)代漢語中有點兒難是什么結(jié)構(gòu)類型?本文導(dǎo)航英語句子結(jié)構(gòu)分析54個英語句子結(jié)構(gòu)分析及例子英語句子最基本的三種結(jié)構(gòu)難字在...

什么是無界函數(shù) 常見的有界函數(shù)

什么是無界函數(shù) 常見的有界函數(shù)

什么叫有界函數(shù)和無界函數(shù)?什么是無界函數(shù)?函數(shù)無界是什么意思?怎樣證明函數(shù)無界?函數(shù)無界的定義是什么?無界函數(shù)的定義是什么?本文導(dǎo)航常見的有界函數(shù)怎么判斷是否是無界函數(shù)無界函數(shù)定義函數(shù)無界的判斷函數(shù)在定義域內(nèi)有界存在極限嗎無界函數(shù)的極限都不存在嗎常見的有界函數(shù)有界函數(shù)是指有最值,無界函數(shù)則無最值。例...

數(shù)學轉(zhuǎn)點x軸y軸怎么算 x軸y軸坐標圖讀數(shù)

數(shù)學轉(zhuǎn)點x軸y軸怎么算 x軸y軸坐標圖讀數(shù)

一個點離x軸的距離和離y軸的距離怎么求?數(shù)學中一個點在直角坐標系中繞原點旋轉(zhuǎn)90或180度后的坐標怎么求?二次函數(shù)x y軸交點坐標計算公式,大一數(shù)學,要旋轉(zhuǎn)體體積公式,繞x軸和y軸的,x軸y軸坐標圖讀數(shù),三角函數(shù)度數(shù)怎么算xy軸?本文導(dǎo)航一個點離x軸的距離和離y軸的距離怎么求數(shù)學中一個點在直角坐標系...

發(fā)表評論

訪客

◎歡迎參與討論,請在這里發(fā)表您的看法和觀點。