高數(shù)極限怎么求 高數(shù)函數(shù)的極限怎么求

跟你借的幸福2022-08-03 15:06:341703

高數(shù)總結(jié)求極限方法,高數(shù)函數(shù)的極限怎么求?請問高數(shù)極限怎么求?高數(shù)求極限的常用方法,高數(shù)函數(shù)怎么求極限?高數(shù)極限怎么求?

本文導(dǎo)航

高數(shù)總結(jié)求極限方法

1. 代入法, 分母極限不為零時(shí)使用。先考察分母的極限,分母極限是不為零的常數(shù)時(shí)即用此法。

【例1】lim[x-->√3](x^2-3)/(x^4+x^2+1)

解:lim[x-->√3](x^2-3)/(x^4+x^2+1)

=(3-3)/(9+3+1)=0

【例2】lim[x-->0](lg(1+x)+e^x)/arccosx

解:lim[x-->0](lg(1+x)+e^x)/arccosx

=(lg1+e^0)/arccos0

=(0+1)/1

=1

2. 倒數(shù)法,分母極限為零,分子極限為不等于零的常數(shù)時(shí)使用。

【例3】 lim[x-->1]x/(1-x)

解:∵lim[x-->1] (1-x)/x=0 ∴l(xiāng)im[x-->1] x/(1-x)= ∞

以后凡遇分母極限為零,分子極限為不等于零的常數(shù)時(shí),可直接將其極限寫作∞。

3. 消去零因子(分解因式)法,分母極限為零,分子極限也為零,且可分解因式時(shí)使用。

【例4】 lim[x-->1](x^2-2x+1)/(x^3-x)

解:lim[x-->1](x^2-2x+1)/(x^3-x)

=lim[x-->1](x-1)^2/[x(x^2-1)

=lim[x-->1](x-1)/x

=0

【例5】lim[x-->-2](x^3+3x^2+2x)/(x^2-x-6)

解:lim[x-->-2] (x^3+3x^2+2x)/(x^2-x-6)

= lim[x-->-2]x(x+1)(x+2)/[(x+2)(x-3)]

= lim[x-->-2]x(x+1) / (x-3)

=-2/5

【例6】lim[x-->1](x^2-6x+8)/(x^2-5x+4)

解:lim[x-->1](x^2-6x+8)/(x^2-5x+4)

= lim[x-->1](x-2)(x-4)/[(x-1)(x-4)]

= lim[x-->1](x-2) /[(x-1)

=∞

【例7】lim[h-->0][(x+k)^3-x^3]/h

解:lim[h-->0][(x+h)^3-x^3]/h

= lim[h-->0][(x+h) –x][(x+h)^2+x(x+h)+h^2]/h

= lim[h-->0] [(x+h)^2+x(x+h)+h^2]

=2x^2

這實(shí)際上是為將來的求導(dǎo)數(shù)做準(zhǔn)備。

4. 消去零因子(有理化)法,分母極限為零,分子極限也為零,不可分解,但可有理化時(shí)使用。可利用平方差、立方差、立方和進(jìn)行有理化。

【例8】lim[x-->0][√1+x^2]-1]/x

解:lim[x-->0][√1+x^2]-1]/x

= lim[x-->0][√1+x^2]-1] [√1+x^2]+1]/{x[√1+x^2]+1]}

= lim[x-->0][ 1+x^2-1] /{x[√1+x^2]+1]}

= lim[x-->0] x / [√1+x^2]+1]

=0

【例9】lim[x-->-8][√(1-x)-3]/(2+x^(1/3))

解:lim[x-->-8][√(1-x)-3]/(2+x^(1/3))

=lim[x-->-8][√(1-x)-3] [√(1-x)+3] [4-2x^(1/3)+x^(2/3)]

÷{(2+x^(1/3))[4-2x^(1/3)+x^(2/3)] [√(1-x)+3]}

=lim[x-->-8](-x-8) [4-2x^(1/3)+x^(2/3)]/{(x+8)[√(1-x)+3]}

=lim[x-->-8] [4-2x^(1/3)+x^(2/3)]/[√(1-x)+3]

=-2

5. 零因子替換法。利用第一個(gè)重要極限:lim[x-->0]sinx/x=1,分母極限為零,分子極限也為零,不可分解,不可有理化,但出現(xiàn)或可化為sinx/x時(shí)使用。常配合利用三角函數(shù)公式。

【例10】lim[x-->0]sinax/sinbx

解:lim[x-->0]sinax/sinbx

= lim[x-->0]sinax/(ax)*lim[x-->0]bx/sinbx*lim[x-->0]ax/(bx)

=1*1*a/b=a/b

【例11】lim[x-->0]sinax/tanbx

解:lim[x-->0]sinax/tanbx

= lim[x-->0]sinax/ sinbx*lim[x-->0]cosbx

=a/b

6. 無窮轉(zhuǎn)換法,分母、分子出現(xiàn)無窮大時(shí)使用,常常借用無窮大和無窮小的性質(zhì)。

【例12】lim[x-->∞]sinx/x

解:∵x-->∞ ∴1/x是無窮小量

∵|sinx|<=1, 是有界量 ∴sinx/x=sinx* 1/x是無窮小量

從而:lim[x-->∞]sinx/x=0

【例13】lim[x-->∞](x^2-1)/(2x^2-x-1)

解:lim[x-->∞](x^2-1)/(2x^2-x-1)

= lim[x-->∞](1 -1/x^2)/(2-1/x-1/ x^2)

=1/2

【例14】lim[n-->∞](1+2+……+n)/(2n^2-n-1)

解:lim[n-->∞](1+2+……+n)/(2n^2-n-1)

=lim[n-->∞][n( n+1)/2]/(2n^2-n-1)

=lim[n-->∞][ (1+1/n)/2]/(2-1/n-1/n^2)

=1/4

【例15】lim[x-->∞](2x-3)^20(3x+2)^30/(5x+1)^50

解:lim[x-->∞](2x-3)^20(3x+2)^30/(5x+1)^50

= lim[x-->∞][(2x-3)/ (5x+1)]^20[(3x+2)/ (5x+1)]^30

= lim[x-->∞][(2-3/x)/ (5+1/ x)]^20[(3+2/ x)/ (5+1/ x)]^30

=(2/5)^20(3/5)^30=2^20*3^30/5^50

高數(shù)函數(shù)的極限怎么求

首先看能不能直接代入

如果是未定型的極限式子

就換為0/0或∞/∞之后

使用洛必達(dá)法則

分子分母同時(shí)求導(dǎo)

直到得到常數(shù)或無窮大為止

請問高數(shù)極限怎么求

第一個(gè)題目因式分解就可以,最后代入值,第二題用等價(jià)無窮小轉(zhuǎn)化,

高數(shù)求極限的常用方法

高數(shù)函數(shù)怎么求極限

定義,初等函數(shù)有定義的極限就是函數(shù)值,零除零,無窮除無窮可以用洛必達(dá)法則,還有個(gè)重要極限

高數(shù)極限怎么求?

不存在。

理由:

當(dāng)x趨向于1,arctan1/x趨向于π/4

x-2趨向于-1

常數(shù)除以0,極限不存在。

掃描二維碼推送至手機(jī)訪問。

版權(quán)聲明:本文由尚恩教育網(wǎng)發(fā)布,如需轉(zhuǎn)載請注明出處。

本文鏈接:http://codetoknow.com/view/29155.html

標(biāo)簽: 課程

“高數(shù)極限怎么求 高數(shù)函數(shù)的極限怎么求” 的相關(guān)文章

高數(shù)極限怎么理解 高數(shù)有關(guān)極限知識怎么理解?

高數(shù)極限怎么理解 高數(shù)有關(guān)極限知識怎么理解?

如何理解極限定義?高等數(shù)學(xué)極限怎么理解?如何理解“極限”的定義?高等數(shù)學(xué)的數(shù)列極限的定義怎么好理解?。扛邤?shù)有關(guān)極限知識怎么理解?本文導(dǎo)航判斷極限的定義高等數(shù)學(xué)極限怎么理解?如何理解“極限”的定義高等數(shù)學(xué)的數(shù)列極限的定義怎么好理解啊高數(shù)有關(guān)極限知識怎么理解?判斷極限的定義問得好!我們教高數(shù)的教師,十有...

導(dǎo)數(shù)的介值定理是什么 介值定理和夾逼定理的區(qū)別

導(dǎo)數(shù)的介值定理是什么 介值定理和夾逼定理的區(qū)別

導(dǎo)數(shù)介值定理與達(dá)布定理有何關(guān)系,什么是介值定理?導(dǎo)數(shù)介值定理和連續(xù)函數(shù)介值定理的異同是是什么???張宇為什么講導(dǎo)數(shù)介值定理?介值定理定義是什么?本文導(dǎo)航導(dǎo)數(shù)特殊值公式推導(dǎo)介值定理和夾逼定理的區(qū)別單調(diào)區(qū)間與導(dǎo)數(shù)關(guān)系如何通俗地理解導(dǎo)數(shù)介值定理為什么要求開區(qū)間導(dǎo)數(shù)特殊值公式推導(dǎo)導(dǎo)數(shù)介值定理就是達(dá)布定理,兩者...

怎么求函數(shù)的等價(jià)無窮小 怎么求一個(gè)函數(shù)的等價(jià)無窮小?

高等數(shù)學(xué)中求極限怎么找一個(gè)函數(shù)的等價(jià)無窮小呢?高數(shù)請問該等價(jià)無窮小怎么算的?如何求等價(jià)無窮???高等數(shù)學(xué)等價(jià)無窮小的幾個(gè)常用公式,怎么求一個(gè)函數(shù)的等價(jià)無窮?。吭鯓訉ふ胰我庖粋€(gè)函數(shù)的等價(jià)無窮小代換函數(shù)?本文導(dǎo)航高等數(shù)學(xué)中求極限怎么找一個(gè)函數(shù)的等價(jià)無窮小呢?高數(shù)請問該等價(jià)無窮小怎么算的?如何求等價(jià)無窮小高...

高數(shù)為什么考差 各大學(xué)掛科率排名

高數(shù)為什么考差 各大學(xué)掛科率排名

為什么我的數(shù)學(xué)總考不好?我這次高數(shù)考得好差,大學(xué)為什么高數(shù)那么的難?為什么高數(shù)這么難?大一新生期末考完試,覺得自己高數(shù)考的好差,明明仔細(xì)復(fù)習(xí)了,但是拿到卷子感覺還是不會(huì)做題,蒙著答完的,為何高數(shù)被稱為大學(xué)掛科率最高的學(xué)科?本文導(dǎo)航數(shù)學(xué)總是考不了滿分怎么辦高中高數(shù)一難還是高數(shù)二難大學(xué)高數(shù)最難的部分高數(shù)...

為什么求極限要求導(dǎo) 求極限為什么有兩個(gè)答案

為什么求極限要求導(dǎo) 求極限為什么有兩個(gè)答案

求這個(gè)極限的時(shí)候,為什么要先求導(dǎo)?為什么好多題里求極限的過程中要先求導(dǎo)?求極限就是求導(dǎo)嗎?函數(shù)求極值時(shí)為什么要先求導(dǎo)?為什么求極限有時(shí)是直接代入,有時(shí)要先化簡,有時(shí)還要先求導(dǎo)?求極限為什么有的是直接代入,有的是需要求導(dǎo)?怎么判斷區(qū)分呢?本文導(dǎo)航什么情況下可以用求導(dǎo)求極限取極限與求導(dǎo)的關(guān)系為什么求極限...

怎么證明連續(xù)的函數(shù)不可導(dǎo) 如何證明函數(shù)在一個(gè)點(diǎn)連續(xù)不連續(xù) 可導(dǎo)不可導(dǎo)

怎么證明連續(xù)的函數(shù)不可導(dǎo) 如何證明函數(shù)在一個(gè)點(diǎn)連續(xù)不連續(xù) 可導(dǎo)不可導(dǎo)

函數(shù)連續(xù)但不可導(dǎo)怎么證明?如何用定義證明連續(xù)不一定可導(dǎo)?如何證明函數(shù)在一個(gè)點(diǎn)連續(xù)不連續(xù) 可導(dǎo)不可導(dǎo)?怎么證明可導(dǎo)就連續(xù),連續(xù)不 一定可導(dǎo)?讓我看懂?連續(xù)不一定可導(dǎo)的例子有哪些,可導(dǎo)一定連續(xù) 連續(xù)未必可導(dǎo) 怎么證明?本文導(dǎo)航函數(shù)連續(xù)但不可導(dǎo)怎么證明如何用定義證明連續(xù)不一定可導(dǎo)如何證明函數(shù)在一個(gè)點(diǎn)連續(xù)不...

發(fā)表評論

訪客

◎歡迎參與討論,請?jiān)谶@里發(fā)表您的看法和觀點(diǎn)。