數(shù)學(xué)一概率論哪些不考 考研數(shù)學(xué)二用不用考概率論
考研數(shù)學(xué)中301數(shù)學(xué)一中的概率論與數(shù)理統(tǒng)計考不考數(shù)理統(tǒng)計部分,考研數(shù)學(xué)概率部分哪些章節(jié)不考,考研數(shù)學(xué)一,概率論部分是不是只考到課本的前七章啊,考研概率論考不考卷積公式?謝謝!學(xué)長學(xué)姐求告之。數(shù)學(xué)一。
本文導(dǎo)航
考研概率與數(shù)理統(tǒng)計公式
不考數(shù)理統(tǒng)計部分。
考研數(shù)學(xué)時間分配及做題順序
不知道你考數(shù)幾??你要是考數(shù)一的話那就很方便了,高數(shù)、線代、概率一節(jié)都不要落,全看!帶*號的內(nèi)容曾經(jīng)考過~~
貝葉斯公式很重要啊,可以說是必考的東西!
數(shù)學(xué)考試讓簡單計算器。不論數(shù)幾都讓帶~~專業(yè)課一般也都可以帶~~不過都只讓帶那種不帶記憶功能的簡單計算器~~
考研數(shù)學(xué)概率論題庫
理論上,數(shù)一除經(jīng)濟(jì)內(nèi)容不考外,其他是全考全覆蓋的,但是概率統(tǒng)計部分有些因為比較復(fù)雜,所以常年沒有出過題,但是誰也不能給你XX內(nèi)容絕對不考的承諾哦,祝好運!
考研數(shù)學(xué)二用不用考概率論
考研概率論不考卷積公式,因為卷積公式不算重點掌握內(nèi)容。
一、隨機(jī)事件和概率
考試內(nèi)容
隨機(jī)事件與樣本空間事件的關(guān)系與運算完備事件組概率的概念概率的基本性質(zhì)古典型概率幾何型概率條件概率概率的基本公式事件的獨立性獨立重復(fù)試驗
二、隨機(jī)變量及其分布
考試內(nèi)容
隨機(jī)變量隨機(jī)變量分布函數(shù)的概念及其性質(zhì)離散型隨機(jī)變量的概率分布連續(xù)型隨機(jī)變量的概率密度常見隨機(jī)變量的分布隨機(jī)變量函數(shù)的分布
考試要求
1、理解分布函數(shù)的概念及性質(zhì),會計算與隨機(jī)變量相聯(lián)系的事件的概率
2、理解離散型隨機(jī)變量及其概率分布的概念,掌握0-1分布、二項分布、幾何分布、超幾何分布、泊松(Poisson)分布及其應(yīng)用
3、掌握泊松定理的結(jié)論和應(yīng)用條件,會用泊松分布近似表示二項分布
4、理解連續(xù)型隨機(jī)變量及其概率密度的概念,掌握均勻分布、正態(tài)分布、指數(shù)分布及其應(yīng)用
5、會求隨機(jī)變量函數(shù)的分布
三、多維隨機(jī)變量的分布
考試內(nèi)容
多維隨機(jī)變量及其分布函數(shù)二維離散型隨機(jī)變量的概率分布、邊緣分布和條件分布二維連續(xù)型隨機(jī)變量的概率密度、邊緣概率密度和條件密度隨機(jī)變量的獨立性和不相關(guān)性常見二維隨機(jī)變量的分布兩個及兩個以上隨機(jī)變量簡單函數(shù)的分布
考試要求
1、理解多維隨機(jī)變量的分布函數(shù)的概念和基本性質(zhì)
2、理解二維離散型隨機(jī)變量的概率分布和二維連續(xù)型隨機(jī)變量的概率密度,掌握二維隨機(jī)變量的邊緣分布和條件分布
3、理解隨機(jī)變量的獨立性和不相關(guān)性的概念,掌握隨機(jī)變量相互獨立的條件,理解隨機(jī)變量的不相關(guān)性與獨立性的關(guān)系
4、掌握二維均勻分布和二維正態(tài)分布,理解其中參數(shù)的概率意義
5、會根據(jù)兩個隨機(jī)變量的聯(lián)合分布求其函數(shù)的分布,會根據(jù)多個相互獨立隨機(jī)變量的聯(lián)合分布求其簡單函數(shù)的分布
四、隨機(jī)變量的數(shù)字特征
考試內(nèi)容
隨機(jī)變量的數(shù)學(xué)期望(均值)、方差、標(biāo)準(zhǔn)差及其性質(zhì)隨機(jī)變量函數(shù)的數(shù)學(xué)期望切比雪夫(Chebyshev)不等式矩、協(xié)方差、相關(guān)系數(shù)及其性質(zhì)
考試要求
1、理解隨機(jī)變量數(shù)字特征(數(shù)學(xué)期望、方差、標(biāo)準(zhǔn)差、矩、協(xié)方差、相關(guān)系數(shù))的概念,會運用數(shù)字特征的基本性質(zhì),并掌握常用分布的數(shù)字特征
2、會求隨機(jī)變量函數(shù)的數(shù)學(xué)期望
3、了解切比雪夫不等式
五、大數(shù)定律和中心極限定理
考試內(nèi)容
切比雪夫大數(shù)定律伯努利(Bernoulli)大數(shù)定律辛欽(Khinchine)大數(shù)定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列維-林德伯格(Levy-Lindberg)定理
考試要求
1、了解切比雪夫大數(shù)定律、伯努利大數(shù)定律和辛欽大數(shù)定律(獨立同分布隨機(jī)變量序列的大數(shù)定律)
2、了解棣莫弗-拉普拉斯中心極限定理(二項分布以正態(tài)分布為極限分布)、列維-林德伯格中心極限定理(獨立同分布隨機(jī)變量序列的中心極限定理),并會用相關(guān)定理近似計算有關(guān)隨機(jī)事件的概率.
六、數(shù)理統(tǒng)計的基本概念
考試內(nèi)容
總體個體簡單隨機(jī)樣本統(tǒng)計量經(jīng)驗分布函數(shù)樣本均值樣本方差和樣本矩分布分布分布分位數(shù)正態(tài)總體的常用抽樣分布
考試要求
1、了解總體、簡單隨機(jī)樣本、統(tǒng)計量、樣本均值、樣本方差及樣本矩的概念
2、了解產(chǎn)生變量、變量和變量的典型模式;了解標(biāo)準(zhǔn)正態(tài)分布、分布、分布和分布的上側(cè)分位數(shù),會查相應(yīng)的數(shù)值表
3、掌握正態(tài)總體的樣本均值、樣本方差、樣本矩的抽樣分布
4、了解經(jīng)驗分布函數(shù)的概念和性質(zhì)
七、參數(shù)估計
考試內(nèi)容
點估計的概念估計量和估計值矩估計法最大似然估計法
考試要求
1、了解參數(shù)的點估計、估計量與估計值的概念
2、掌握矩估計法(一階矩、二階矩)和最大似然估計法
掃描二維碼推送至手機(jī)訪問。
版權(quán)聲明:本文由尚恩教育網(wǎng)發(fā)布,如需轉(zhuǎn)載請注明出處。